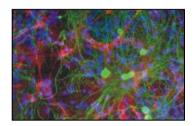
••••••NeuroProof

Functional Phenotypic Screenings using
Neuronal Network Cultures
on Microelectrode Arrays

NeuroProof Systems GmbH, Rostock, Germany

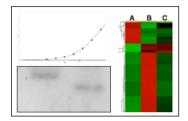

www.neuroproof.com info@neuroproof.com

phone: +49 381 54345660

NP_Pres_PitchV41.39 2023 03 23

The NeuroProof Services

Cell Culture Support and Services

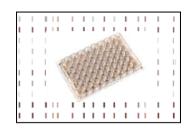

Primary mouse neurons

- Cortex
- Hippocampus
- Midbrain
- Cerebellum
- Hypothalamus
- · Spinal cord, Dorsal root ganglia
- Striatum
- Microglia
- Astrocytes

hiPSC neurons

- Cortical
- Glutamatergic
- GABAergic
- Dopaminergic
- Motor neurons
- Sensory neurons
- +/- human astrocytes
- +/- human microglia

Validation & Assays


Target validation

- Western blot
- Multiplexing
- Gene expression
- rtPCR, seqRNA,
- Single cell seqRNA
- (phospho)-ELISA
- RNA interference
- Overexpression
- Knockout studies

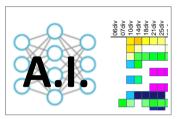
Vitality assays

- LDH assay
- ATP
- Protease
- ROS
- Imaging
- ICC
- Ca²⁺

Premium MEA recording services and support

Compound profiling

- Neuractive functionality
- Potency comparison
- Side effect prediction
- Neuro-development


Disease models

- Alzheimer (APP)
- Parkinson (A35T, MPP+)
- Immunology
- ALS
- SMA
- NPC1
- FragileX
- Epilepsy
- Schizophrenia

Disease model development:

iPSC → neuronal phenotype AAV transduction

CNS Big Data Al Analytics

Multi-parametric analysis

AI-based analytics

- Classification
- in-house databases
- E/I balance
- Deep learning methods

Compelling data visualisization

Brain data integration into propietary scores

- Effect Score
- Seizure Score
- Sedation Score
- Development Index

Neuron/Glia Co-Cultures on Micro-Electrode Array Chips

Mouse cultures

Frontal cortex

Hippocampus

Hippocampus + Amygdala

Ventral midbrain

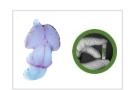
Ventral midbrain + frontal cortex

Hypothalamus

Spinal cord

Dorsal root ganglia

Spinal cord + DRG


Cerebellum

Hippocampus (ictal)

Striatum

Microglia

Well-characterized references

Human culture models

GABAergic neurons

Dopaminergic neurons

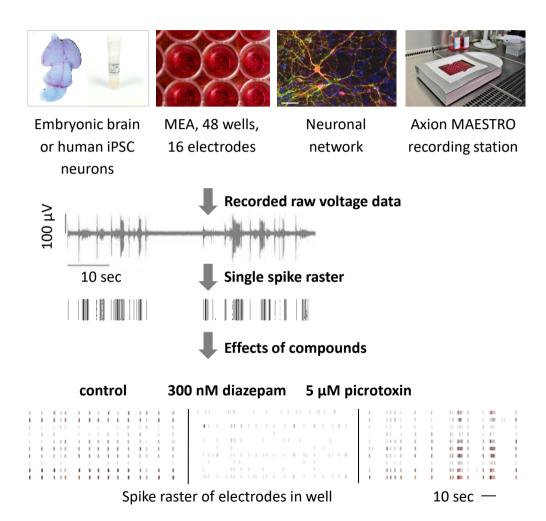
Glutamatergic neurons

Motor neurons

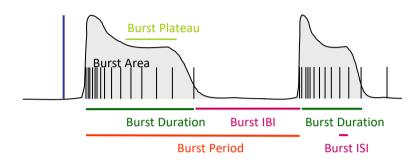
Sensory neurons

Astrocytes

Microglia


Co-culture and tri-culture systems

In total >20 human cell lines screened


Disease-specific neuron models

Alzheimer's disease, Parkinson's disease, ALS, SMA, Fragile X, Epilepsy, Schizophrenia, Autism, Depression

Multielectrode Array Recordings - MEA

Each spike train is described by more than 200 activity parameters:

1 General Activity

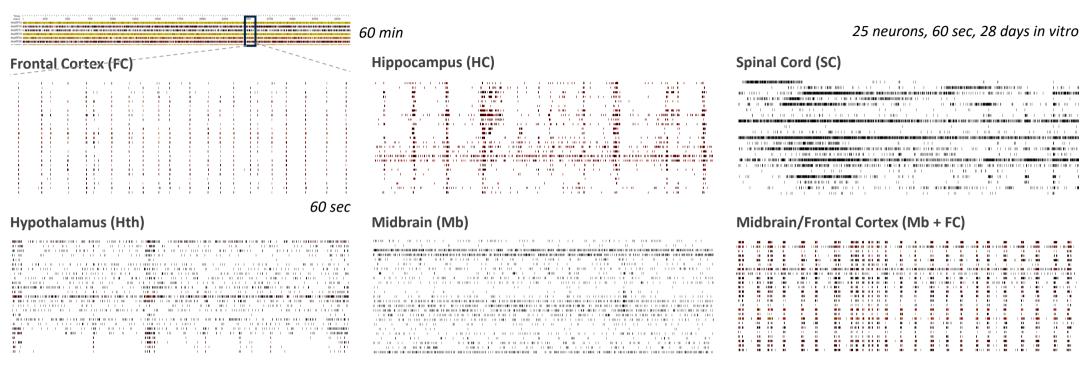
e.g. spike rate, burst rate, burst period, percent of spikes in burst

2 Burst Structure

e.g. number, frequency and ISI of spikes in bursts; burst duration, amplitude, area, plateau position, plateau duration

3 Oscillation

e.g. variation over time as an indicator for the strength of the oscillation; Gabor function fitted to autocorrelograms


4 Synchronicity / Connectivity

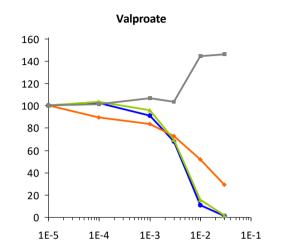
e.g. variation within the network as an Indicator for the strength of the synchronization; simplex synchronization, percent of units in synchronized burst

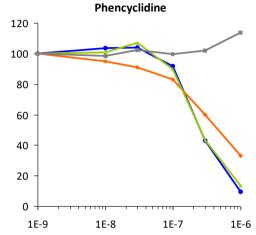
Functional Phenotype = Fingerprint

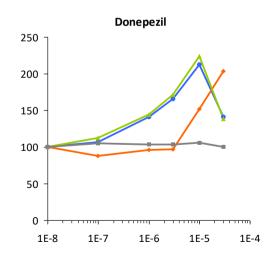
Phenotypic Spontaneous Activity Patterns of Brain Region Specific Tissue Cultures

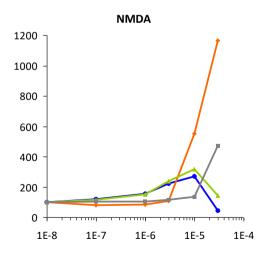
Co-cultures are customizable based on customer wishes

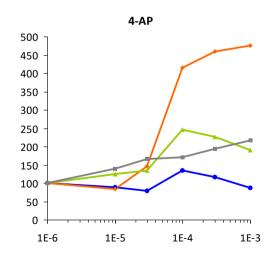
Cross validation matrix shows highly reproducible tissue-specific activity pattern

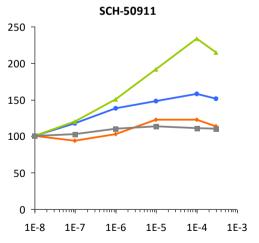

% of datasets, 500 datasets each


Reproducible spontaneous tissuespecific activity pattern


→ Allows similarity analysis to unknown activity pattern


Compound Effects on Network Activity


- ✓ Proprietary compound databases for fast phenotypic screening.
- ✓ Compound combinations.
- ✓ Repositioning.
- ✓ Toxicity tests (e.g. seizure).
- ✓ Phenotypic profiling against marketed drugs.



Charts are % control — general activity: Spike rate (SR) — burst structure: Burst duration — regularity over time: SR SD — synchronization: SR CVnet

NeuroProof Database Primary Cortex

Antidepressants,
Neuroleptics
Amisulpride
Amitriptyline
Aripiprazole
Chlorpromazine
Clozapine
Duloxetine
Fluoxetine
Haloperidol
Lithium chloride
Nortriptyline
Olanzapine
Quetiapine
Risperidone
Sertraline

Antidonrossants

Anesthetics, **Analgesics**

Acetaminophen Acetylsalicylic acid Ibuprofen Ketamine L-Polamidone Morphine Propofol Sufentanil

Anticonvulsants. **Sedatives** Carbamazepine

Clobazam Clonazepam Diazepam Gabapentin Flunitrazepam Lamotrigine Levetiracetam Phenobarbital Phenytoin Pregabalin Thiopental Valproate Zolpidem

Cognition Enhancers

Caffeine Donepezil **D-Cvcloserine** Galanthamine Memantine Modafinil Piracetam

GABAA Receptor

Bicuculline DS₁ DS2 **Etomidate** Flumazenil **GABA** L-655,708 Methaqualone Muscimol Pentvlenetetrazole **Picrotoxin** Propofol SB-205384 Thio-THIP **THIP** Xli 093

GABAB Receptor

Baclofen CGP 7930 GS 39783 SCH 50911 SKF 97541

Glutamate Receptor

somatostatin **AMPA** receptors LY-341,495 LY-354,740 Cp 93129 LY-393.558 MK-4256 MK 801 **NAD 299 NBQX** Ondansetron **NMDA** Palonosetron Segletide

Serotonine and

Nalorphine

L-Polamidone

Gap Junctions

Carbenoxolone

Sodium Propionate

Frontal Cortex

Release: 06/2020 Clinical drugs

Mefloquine

1-Octanol

Naloxone

Acetyl Choline System WAY 100 635

Atropine methyl **Opioid System** bromide **Epibatidine DPDPE** Eserine Dermorphine Ipratropium Endomorphin I + II Oxotremorine Enkephaline

Dopamine System

Apomorphine Dopamine GBR 12935 Indatraline

Pilocarpine

Growth factors

BDNF Nerve growth factor (NGF) **GDNF**

Solvents

DMSO Ethanol Cyclodextrine

Sugars

Saccharin D-sorbitol **Aspartam**

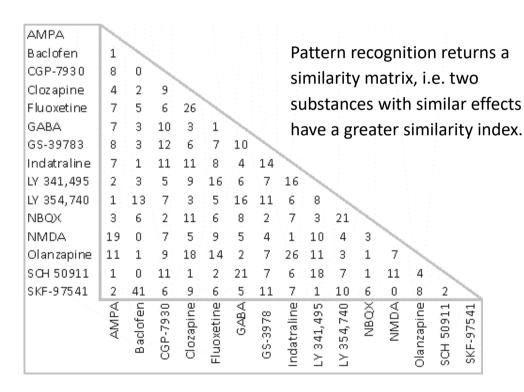
Others

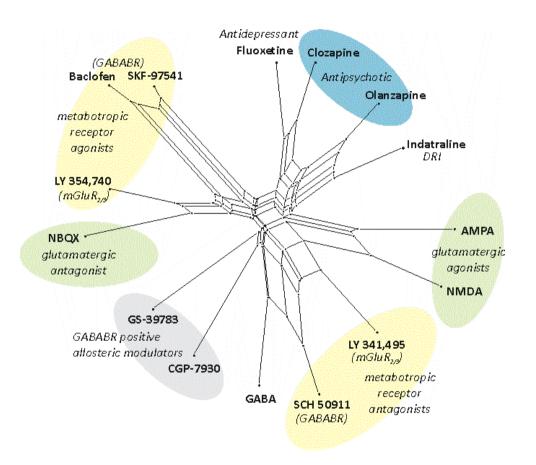
Agmatine Benzoquinone Chlorpyrifos Oxon Clonidine

Corticosterone Cortisol

Cyclosporin A DOI

Glyphosate K252a


Mefloquine Neuropeptide Y Neurotensin Orexin A Ouabain


PCP Pilocarpine Tacrolimus Tetrodotoxin Wortmannin

Complete concentration-response "fingerprints" available

Visualization of Classification Results

Pattern recognition allows similarity analysis between novel compounds and known reference compounds

Above: 2D representation of the similitarities using a phylogenetic tree. Similar substances are grouped, agonists are opposite their antagonists.

NeuroProof Screening Assays

Assay and Readout	Application	Cell Culture
Primary Screening		
Compound characterization	Neuroactivity	Mouse, human
EC50, Hill coefficient	Potency comparison	Mouse, human
Database comparison	Similarity/difference to Mouse, human marketed drugs	
	Toxicology	
Seizure		
Classification	HESI Neutox Assay for Safety Pharmacology	Mouse, human
Sedation		
Classification	Sedation score	Mouse
E/I Balance		
E/I Balance ratio	Validation of disease models	Mouse

Readout	Application	Cell Culture		
Development				
Early Brain Development Index Classification	Delay and promotion of functional development	Mouse, human		
iPSC neuron characterization				
Multivariate analysis, synchronization index	Similarity to mouse brain tissue culture	Human		
	lot-comparison			
Combination				
Phenotypic multi-parametric compound characterization in combination matrix	Synergy Additive	Mouse, human		
Electrical stimulation				
Phenotypic multi-parametric compound characterization	Synaptic plasticity Connectivity	Mouse, human		

NeuroProof Disease Models

Model Type	Cell Culture
Alzheimer's Disease	
Amyloid beta addition	Mouse, human iPSC neurons
Streptozotocin addition	Mouse, human iPSC neurons
Parkinson's Disease	
MPP+ addition	Mouse, human dopa neurons
Alpha-synuclein induction with AAV	In Development
5-HT2A	
Depression, PTSD	Mouse, human iPSC neurons
Epilepsy	
4-AP addition	Mouse
Bicucullin addition	Mouse
Pentylene tetrazole addition	Mouse
Developmental model	Mouse
Pruritus and Neuropathic Pain	
Perturbation model	Mouse – sensory neurons

Model Type	Cell Culture
Bipolar disorder	
Ouabain addition	Mouse
Schizophrenia	
Ketamine addition	Mouse
PCP addition	Mouse
Developmental model	Mouse, human iPSC neurons
Tachycardia	
Cardiomyocyte	In Development
Patient material and isogenic control	Human iPSC neurons
Spinal Muscular Atrophy	
Patient material, isogenic control	Human iPSC motor neurons
ALS	
Patient material, healthy control	Human iPSC motor neurons
Fragile X Syndrome	
Patient material	Human iPSC neurons

Technology Highlights

NeuroProof offers full technology access to CNS related projects from start to market as Fee for Service or integrated projects on a Full Time Equivalent business.

We provide complete support for every stage - from research to clinical.

- Specialized CRO partner for neuro-pharmacology and nutrition
- More than 20 years of experience with MEA technology, highly qualified experts
- A leader in quality standards, cell culture applications and data analysis
- Our USP: Proprietary data analysis platform including artificial intelligence (e.g. classification of compounds, side effect prediction, disease scores, deep learning methods)
- Established CNS assays and experience in assays development (for neurodegenerative, psychotic and rare disorders)
- Experienced partner in hiPSC neuron MEA screening (associated with IMI-EBISC and StemBancc, screening of numerous hiPSC neuron lines)

Relevant Publications

- Wohlrab, J., D. Stintzing, L. Schultz, K. Jügelt and O. H. U. Schroeder (2021). "Influence of Janus kinase inhibitors on the neuronal activity as proof-of-concept model for itch." Skin Pharmacology and Physiology (2021).
- Carbone, B. E., M. Abouleish, K. E. Watters, S. Vogel, A. Ribic, O. H. Schroeder, B. M. Bader and T. Biederer. "Synaptic Connectivity and Cortical Maturation Are Promoted by the Omega-3 Fatty Acid Docosahexaenoic Acid." **Cereb Cortex**, (2019).
- Bader BM, Jügelt K, Schultz L, Schroeder OH-U. Ginkgo biloba L. (Ginkgoaceae) Leaf Extract Medications From Different Providers Exhibit Differential Functional Effects on Mouse Frontal Cortex Neuronal Networks. Frontiers in Pharmacology. 2018;9(848).
- Feng X, Bader BM, Yang F, Segura M, Schultz L, Schröder OHU, et al. Improvement of impaired electrical activity in NPC1 mutant cortical neurons upon DHPG stimulation detected by micro-electrode array. **Brain Research**. 2018;1694:87-93.
- Bader BM, Steder A, Klein AB, Frølund B, Schroeder OHU, Jensen AA. Functional characterization of GABA A receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings. **PLoS ONE** 2017 12(10):e0186147.
- Schultz L, Zurich MG, Culot M, Fabulas-da Costa A, Landry C, Bellwon P, Kristl T, Hörmann K, Ruzek S, Aiche S, Reinert K, Bielow C, Gosselet F, Cecchelli R, Huber CG, Schroeder OH, Gramowski-Voss A, Weiss DG, Bal-Price A. Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. **Toxicol In Vitro**. 2015 Dec 25;30(1 Pt A):138-65. doi: 10.1016/j.tiv.2015.05.016
- Bellwon P, Culot M, Wilmes A, Schmidt T, Zurich MG, Schultz L, Schmal O, Gramowski-Voss A, Weiss DG, Jennings P, Bal-Price A, Testai E, Dekant W. Cyclosporine A kinetics in brain cell cultures and its potential of crossing the blood-brain barrier. **Toxicol In Vitro.** 2015 Dec 25;30(1 Pt A):166-75. doi: 10.1016/j.tiv.2015.01.003.
- Hammer H; Bader BM.; Ehnert C; Bundgaard C; Bunch L; Hoestgaard-Jensen K; Schröder O; Bastlund L F; Gramowski-Voß A; Jensen, AA. A multifaceted GABAA receptor modulator: Functional properties and mechanism of action of the sedative-hypnotic and recreational drug methaqualone (Quaalude®). **Molecular Pharmacology**, 2015 Jun 8. pii: mol.115.099291.
- Gramowski-Voß A, Schwertle H-J, Pielka A-M, et al. Enhancement of Cortical Network Activity in vitro and Promotion of GABAergic Neurogenesis by Stimulation with an Electromagnetic Field with a 150 MHz Carrier Wave Pulsed with an Alternating 10 and 16 Hz Modulation. **Frontiers in Neurology.** 2015;6:158. doi:10.3389/fneur.2015.00158.
- Pomponio G, Zurich MG, Schultz L, Weiss DG, Romanelli L, Gramowski-Voss A, Di Consiglio E, Testai E. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures. Toxicol In Vitro. **Toxicol In Vitro**. 2015 Dec 25;30(1 Pt A):192-202. doi: 10.1016/j.tiv.2015.01.012
- Parenti C, Turnaturi R, Aricò G, Gramowski-Voss A, Schroeder OH, Marrazzo A, Prezzavento O, Ronsisvalle S, Scoto GM, Ronsisvalle G, Pasquinucci L. The multitarget opioid ligand LP1's effects in persistent pain and in primary cell neuronal cultures. **Neuropharmacology** 2013 Aug;71:70-82.
- Johnstone AFM, Gross GW, Weiss DG, Schroeder OH, Gramowski A, Shafer TJ. Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 2010 Aug;31(4):331-50.

Thank you!

We appreciate your interest in this presentation.

Please contact us for further information for your projects.

www.neuroproof.com

info@neuroproof.com